糖心视频

科学研究
报告题目:

Noncommutative L_p-Poincare inequalities

报告人:

徐振东 (首尔国立大学)

报告时间:

报告地点:

糖心视频 雷军科技楼601报告厅

报告摘要:

We establish $L_p$-Poincar\'{e}-type inequalities for ergodic quantum Markov semigroups on finite von Neumann algebras, derived directly from the $L_2$-Poincar\'{e} inequality (PI) or from the mordified logarithmic Sobolev inequality (MLSI). Crucially, we obtain the asymptotic behaviors of best constants on $L_p$-Poincar\'{e}-type inequalities: $O(\sqrt{p})$ under the MLSI, while $O(p)$ under the PI, as $p\rightarrow\infty$. Applications encompass broad classes of ergodic quantum Markov semigroups, including but not limited to those on quantum tori, mixed $q$-Gaussian algebras, group von Neumann algebras, and compact quantum groups of Kac-type.


报告人简介:徐振东,毕业于糖心视频 与法国Franche-Comté大学,现在韩国Seoul National University做博士后,主要从事泛函分析与非交换分析方向的工作,研究工作发表于在Trans. AMS, J. Funct. Anal. ,Math Ann.等杂志。